Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences ; XLVIII-M-1-2023:211-216, 2023.
Article in English | ProQuest Central | ID: covidwho-2300422

ABSTRACT

The role of animal movement in spreading infectious diseases is highly recognized by various legislations and institutions such as the World Organisation for Animal Health and the International Animal Health Code. The increased interactions at the nexus of human-animal-ecosystem interface have seen an unprecedented introduction and reintroduction of new zoonotic diseases with high socio-economic impacts such as the COVID-19 pandemic. Rift Valley fever (RVF) is a zoonotic disease that affects both humans and animals and is transmitted by Aedes mosquitoes or through contact with the body fluids of infected animals. This study seeks to characterize movement patterns of pastoralist and how this movement behaviour increases their susceptibility to RVF virus exposure. We levarage on a rapidly growing field of movement ecology to monitor five herds collared from 2013 – 2015 in an RVF endemic semi-arid region in Kenya. The herds were also sampled for RVF antibodies to assess their exposure to RVF virus during the rainy seasons. adehabitatLT package in R was used to analyze the trajectory data whereas the first passage time (FPT) analysis was used to measure the area utilized in grazing. Sedentary herds grazed within 15km radius while migrating herds presented restricted space use patterns during the dry seasons and transient movement during the start and end of the rainy season. Furthermore, RVF virus antibodies were generally low for sedentary herds whereas the migrating herds recorded high levels during their transition periods. This study can be used to identify RVF risk zones for timely and targeted management strategies.

2.
Atmospheric Chemistry and Physics ; 22(18):12153-12166, 2022.
Article in English | ProQuest Central | ID: covidwho-2040263

ABSTRACT

A knowledge gap exists concerning how chemical composition and sources respond to implemented policy control measures for aerosols, particularly in a semi-arid region. To address this, a single year's offline measurement was conducted in Hohhot, a semi-arid city in northern China, to reveal the driving factors of severe air pollution in a semi-arid region and assess the impact of the COVID-19 lockdown measures on chemical characteristics and sources of PM2.5. Organic matter, mineral dust, sulfate and nitrate accounted for 31.5 %, 14.2 %, 13.4 % and 12.3 % of the total PM2.5 mass, respectively. Coal combustion, vehicular emission, crustal source and secondary inorganic aerosols were the main sources of PM2.5 in Hohhot, at 38.3 %, 35.0 %, 13.5 %, and 11.4 %, respectively. Due to the coupling effect of emission reduction and improved atmospheric conditions, the concentration of secondary inorganic components, organic matter and elemental carbon declined substantially from the pre-lockdown (pre-LD) period to the lockdown (LD) and post-lockdown (post-LD) periods. The source contribution of secondary inorganic aerosols increased (from 21.1 % to 37.8 %), whereas the contribution of vehicular emission reduced (from 35.5 % to 4.4 %) due to lockdown measures. The rapid generation of secondary inorganic components caused by unfavorable meteorological conditions during lockdown led to serious pollution. This study elucidates the complex relationship between air quality and environmental policy.

3.
Aerosol and Air Quality Research ; 21(11), 2021.
Article in English | ProQuest Central | ID: covidwho-1771477

ABSTRACT

In the present study, we focused on the impact of lockdown on black carbon (eBC) mass concentrations and their associated radiative implications from 01st March to 30th June 2020, over a semi-arid station, i.e., in the district of Anantapur in Southern India. The mean eBC mass concentration was observed before lockdown (01st–24th March 2020) and during the lockdown (25th March–30th June 2020) period and was about 1.74 ± 0.36 and 1.11 ± 0.14 µg m–3, respectively. The sharp decrease (~35%) of eBC mass concentration observed during the lockdown (LD) period as compared with before lockdown (BLD) period, was mainly due to the reduction of anthropogenic activities and meteorology. Furthermore, during the entire LD period, the net composite forcing at the top of the atmosphere (TOA) and at the surface (SUR) varied from –4.52 to –6.19 Wm–2 and –22.91 to –29.35 Wm–2, respectively, whereas the net forcing in the atmosphere (ATM) varied from 17.27 to 23.16 Wm–2. Interestingly, the amount of energy trapped in the atmosphere due to eBC is 11.19 Wm–2 before LD and 8.56 Wm–2 during LD. It is concluded that eBC contributes almost 43–50% to the composite forcing. As a result, the eBC atmospheric heating rate decreased significantly (25%) when compared to before lockdown days to lockdown days.

4.
Horticulturae ; 8(2):171, 2022.
Article in English | ProQuest Central | ID: covidwho-1715274

ABSTRACT

Nowadays, there is a large demand for nutrient-dense fruits to promote nutritional and metabolic human health. The production of commercial fruit crops is becoming progressively input-dependent to cope with the losses caused by biotic and abiotic stresses. A wide variety of underutilized crops, which are neither commercially cultivated nor traded on a large scale, are mainly grown, commercialized and consumed locally. These underutilized fruits have many advantages in terms of ease to grow, hardiness and resilience to climate changes compared to the major commercially grown crops. In addition, they are exceptionally rich in important phytochemicals and have medicinal value. Hence, their consumption may help to meet the nutritional needs of rural populations, such as those living in fragile arid and semi-arid regions around the world. In addition, local people are well aware of the nutritional and medicinal properties of these crops. Therefore, emphasis must be given to the rigorous study of the conservation and the nutritional characterization of these crops so that the future food basket may be widened for enhancing its functional and nutritional values. In this review, we described the ethnobotany, medicinal and nutritional values, biodiversity conservation and utilization strategies of 19 climate-resilient important, underutilized fruit crops of arid and semi-arid regions (Indian jujube, Indian gooseberry, lasora, bael, kair, karonda, tamarind, wood apple, custard apple, jamun, jharber, mahua, pilu, khejri, mulberry, chironji, manila tamarind, timroo, khirni).

SELECTION OF CITATIONS
SEARCH DETAIL